Respuesta :

Answer:

See below ~

Step-by-step explanation:

Combination Rule

  • ⁿCₓ = n! / (n - x)! x!

#1) ²²C₂₀

  • ²²C₂₀ = 22! / 2! 20!
  • 22 x 21 x 20! / 2! x 20!
  • 22 x 21 / 2
  • 11 x 21
  • 231

#2) ¹²C₈

  • ¹²C₈ = 12! / 4! 8!
  • 12 x 11 x 10 x 9 x 8! / 4! x 8!
  • 12 x 11 x 10 x 9 / 4 x 3 x 2
  • 11 x 5 x 9
  • 99 x 5
  • 495

Answer:

[tex]\displaystyle ^{22}C_{20} =231[/tex]

[tex]\displaystyle ^{12}C_{8} =495[/tex]

Step-by-step explanation:

Binomial Coefficients

[tex]\displaystyle \binom{n}{r} \: = \:^{n}C_{r} = \frac{n!}{(n-r)! \, r!}[/tex]

[tex]\begin{aligned}\displaystyle \implies ^{22}C_{20} & = \frac{22!}{(22-20)! \, 20!}\\\\ & =\frac{22!}{2! \, 20!}\\\\ & =\frac{22 \cdot 21 \cdot 20!}{2! \, 20!}\\\\ & =\frac{22 \cdot 21}{2 \cdot 1}\\\\ & =\frac{462}{2}\\\\ & =231\end{ailgned}[/tex]

[tex]\displaystyle \begin{aligned} \implies ^{12}C_{8} & = \frac{12!}{(12-8)! \, 8!}\\\\ & =\frac{12!}{4! \, 8!}\\\\ & =\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8!}{4! \, 8!}\\\\ & =\frac{12 \cdot 11 \cdot 10 \cdot 9}{4 \cdot 3 \cdot 2 \cdot 1}\\\\ & =\frac{11880}{24}\\\\ & =495\end{aligned}[/tex]