Answer:
[tex]\boxed{\tt 9\pi }[/tex]
Step-by-step explanation:
What we want to find here is the arc length of 1/2 of a circle, we'll start by finding the of the circle.
Step 1:- find the circumference of the circle →
[tex]\boxed{\sf Circumference\; of\; the \:circle=2\pi r}[/tex]
[tex]\tt 2\pi \times 9[/tex]
[tex]\tt 9\times 2\pi[/tex]
[tex]=\tt 18\pi[/tex]
Step 2:- find the arc length of 1/2 of the circle →
The arc length is 1/2 of the circumference of the circle:-
[tex]\boxed{\sf Circumference \; of \;\cfrac{1}{2}\; of\; the \; circle=\cfrac{1}{2}\times 18\pi}[/tex]
[tex]\tt \cfrac{18}{2} \pi[/tex]
[tex]\boxed{\tt 9\pi}[/tex]
Therefore, the arc length of the semicircle is 9π.