Which of the following is an equivalent expression to the expression a1/3 / a1/4

A. A1/12

B. A7/12

C. 1/1/1/a12

D. 1/7/a12

Which of the following is an equivalent expression to the expression a13 a14 A A112 B A712 C 111a12 D 17a12 class=

Respuesta :

Answer:

Option A :- [tex] \sf {a}^{\frac{1}{12}} [/tex]

Step-by-step explanation:

[tex] \hookrightarrow \sf \: \frac{ {a}^{ \frac{1}{3} } }{ {a}^{ \frac{1}{4} } } [/tex]

Simplify the expression

[tex] \hookrightarrow \sf \: {a}^{ \frac{1}{3} - \frac{1}{4} }[/tex]

Transform the Expression

[tex] \hookrightarrow \sf \: {a}^{ \frac{4 - 3}{12} }[/tex]

Calculate

[tex] \hookrightarrow \sf {a}^{\frac{1}{12}} [/tex]

Answer:

Option A

Step-by-step explanation:

Exponent Law: In exponent division, if base are same, subtract the powers

[tex]\sf \dfrac{a^m}{a^n}=a^{m-n}[/tex]

[tex]\sf \dfrac{1}{3}-\dfrac{1}{4}=\dfrac{1*4}{3*4}-\dfrac{1*3}{4*3}[/tex]

          [tex]\sf =\dfrac{4}{12}-\dfrac{3}{12}\\\\=\dfrac{1}{12}[/tex]

[tex]\sf \dfrac{a^{\frac{1}{3}}}{a^{\frac{1}{4}}}=a^{\frac{1}{3}-\frac{1}{4}}[/tex]

     [tex]=a^{\frac{1}{12}}[/tex]