Find the length of h. Round to the nearest hundreth.

Answer:
h = 0.24
Step-by-step explanation:
Assuming this is a parallelogram...
Sine trig ratio
[tex]\sin(\theta)=\sf \dfrac{O}{H}[/tex]
where:
Let x be the angle in the top left of the parallelogram.
[tex]\implies \sin(x)=\dfrac{0.3}{0.5}=\dfrac35[/tex]
Opposite angles in a parallelogram are congruent.
Therefore, the angle in the bottom right of the parallelogram is also x.
[tex]\implies \sin(x)=\dfrac{h}{0.4}[/tex]
[tex]\textsf{As} \:\sin(x)=\dfrac35[/tex]
[tex]\implies \dfrac35=\dfrac{h}{0.4}[/tex]
[tex]\implies h=\dfrac35 \cdot 0.4=0.24[/tex]
Remember (3,4,5) Pythagorean triplet
Triangle containing y
Triangle containing x
Now use ratio to find