Respuesta :
Answer:
- 12 black counters
Step-by-step explanation:
Let the yellow counters be represented by 'y' and black counters by 'b'.
Originally
- y : b = 3 : 1
After removing 21 counters
- y - 21 : b = 5 : 4
Taking the first ratio, equate it to b.
- y/b = 3
- b = y/3
Now, substitute for 'b' in the second ratio.
- y - 21 / (y/3) = 5/4
- 3 (y - 21) / y = 5/4
- 12 (y - 21) = 5y
- 12y - 252 = 5y
- 7y = 252
- y = 36 yellow counters
Now, to find b :
- b = y/3
- b = 36/3
- b = 12 black counters
Answer:
12
Step-by-step explanation:
Given ratio
yellow : black = 3 : 1
⇒ yellow : black = [tex]3x : x[/tex]
If 21 yellow counters are removed and the ratio becomes 5 : 4
[tex]\implies \textsf{yellow - 21: black = 5 : 4}[/tex]
[tex]\implies (3x - 21):x=5:4[/tex]
[tex]\implies \dfrac{3x - 21}{x}=\dfrac54[/tex]
[tex]\implies 4(3x - 21)=5x[/tex]
[tex]\implies 12x-84=5x[/tex]
[tex]\implies7x=84[/tex]
[tex]\implies x=12[/tex]
Substituting [tex]x=12[/tex] into the original ratio:
[tex]\implies \textsf{yellow : black} =3(12) : (12)=36:12[/tex]
So the total number of black counters = 12