Respuesta :

Answer:

Trigonometric identities

[tex]\sec^2(\alpha)=1+\tan^2(\alpha)[/tex]

[tex]\csc^2(\alpha)=1+\cot^2(\alpha)[/tex]

[tex]\cot^2(\alpha)=\dfrac{1}{\tan^2(\alpha)}[/tex]

Solution

[tex]\begin{aligned}\sec^2(\alpha) \cdot \csc^2(\alpha) & = (1+\tan^2(\alpha))(1+\cot^2(\alpha))\\\\ & =1+\cot^2(\alpha)+\tan^2(\alpha)+tan^2(\alpha)\cot^2(\alpha)\\\\ & = 1+\cot^2(\alpha)+\tan^2(\alpha)+\tan^2(\alpha) \cdot \dfrac{1}{\tan^2(\alpha)}\\\\ & = 1+\cot^2(\alpha)+\tan^2(\alpha)+ \dfrac{\tan^2(\alpha)}{\tan^2(\alpha)}\\\\& = 1+\cot^2(\alpha)+\tan^2(\alpha)+1\\\\& = \tan^2(\alpha)+\cot^2(\alpha)+2\end{aligned}[/tex]

Answer:

See below ~

Step-by-step explanation:

Trigonometric Identies (needed)

  • sec²a = 1 + tan²a
  • cosec²a = 1 + cot²a
  • cot²a = 1/tan²a

Solving

Expanding the LHS

  • sec²a * cosec²a
  • (1 + tan²a) * (1 + cot²a)
  • 1 + tan²a + cot²a + (tan²a * cot²a)
  • 1 + tan²a + cot²a + 1
  • tan²a + cot²a + 2
  • ⇒ RHS

∴ Hence, we have proved the left hand side of the equation is equal to the right hand side.