Write an expression to represent the area of each figure

Answer:
A = 4x² + 3x - 1
Step-by-step explanation:
Area of trapezoid = (a + b)(h)/2
A = [((5x - 4) + (3x + 2)) · (x + 1)] ÷ 2
A = [(8x - 2) · (x + 1)] ÷ 2
A = (8x² + 8x - 2x - 2) ÷ 2
A = 4x² + 4x - x - 1
A = 4x² + 3x - 1
Hope this helps and God bless!
To setup an equation for the area of the figure:
⇒ must know the formula for the area of a trapezoid
[tex]\frac{1}{2}*(base1+base2)*height[/tex]
Now's lets set up the equation:
[tex]Area =\frac{1}{2}(5x-4+3x+2)(x+1) =\frac{1}{2}(8x-2)(x+1)=\frac{1}{2}*(8x^2+8x-2x-2)\\Area = \frac{1}{2} *(8x^2+6x-2)\\Area = 4x^2+3x-1[/tex]
Thus the equation is [tex]4x^2+3x-1[/tex]
Answer: [tex]4x^2+3x-1[/tex]
Hope that helps!