Respuesta :
Answer:
244 miles (nearest whole number)
Step-by-step explanation:
This scenario can be modeled as a geometric series.
From the information given:
- [tex]a[/tex] (initial term) = 8 (miles)
- [tex]r[/tex] (common ratio) = 1.05 (as number of miles increases by 5% each week)
- [tex]n[/tex] = 19 (as the plan is for 19 weeks)
The formula for the sum of the first n terms of a geometric series is:
[tex]S_n=\dfrac{a(1-r^n)}{1-r}[/tex]
Therefore, the sum of the first 19 terms is:
[tex]\implies S_{19}=\dfrac{8(1-1.05^{19})}{1-1.05}[/tex]
[tex]\implies S_{19}=244.3120313...[/tex]
Solution
244 miles (to the nearest whole number)
- First term=a=8mi
- Common ratio=(100+5)% =105%=1.05
- weeks=n=19
So
It's a GP
we need Sum
[tex]\\ \rm\Rrightarrow S_n=\dfrac{a(1-r^n)}{1-r}[/tex]
[tex]\\ \rm\Rrightarrow S_{19}=\dfrac{8(1-1.05^{19})}{1-1.05}[/tex]
[tex]\\ \rm\Rrightarrow S_{19}=\dfrac{−12.21560156300510578244137725830078125}{-0.05}[/tex]
[tex]\\ \rm\Rrightarrow S_{19}=244.312\approx 244mi[/tex]