Respuesta :
Answer:
Part A) The length of rectangle is [tex]3x[/tex] [tex]cm[/tex]
Part B) The perimeter of the square is [tex]3x[/tex] [tex]cm[/tex]
Part C) [tex]20[/tex] [tex]cm[/tex]
Part D) [tex]39[/tex] [tex]cm^2[/tex]
Step-by-step explanation:
Part A) Find the length of the rectangle
we know that
The perimeter of rectangle is equal to
[tex]P=2(L+W)[/tex]
we have
[tex]P=8x[/tex] [tex]cm[/tex]
[tex]W=x[/tex] [tex]cm[/tex]
substitute and solve for L
[tex]8x=2(L+x)[/tex]
[tex]4x=(L+x)[/tex]
[tex]L=4x-x=3x[/tex] [tex]cm[/tex]
Part B) Find the perimeter of the square
we know that
The perimeter of a square is
[tex]P=4b[/tex]
we have that
[tex]b=(1/4)L[/tex]
substitute the value of L
[tex]b=(1/4)3x=(3/4)x[/tex] [tex]cm[/tex]
Find the perimeter of the square
[tex]P=4(3/4)x=3x[/tex] [tex]cm[/tex]
Part C) Find how many cm greater the rectangle's perimeter than the square's perimeter if x=4
Find the value of rectangle's perimeter
[tex]P=8x[/tex] [tex]cm[/tex] ------> [tex]P=8(4)=32[/tex] [tex]cm[/tex]
Find the value of square's perimeter
[tex]P=3x[/tex] [tex]cm[/tex] ------> [tex]P=3(4)=12[/tex] [tex]cm[/tex]
Find the difference
[tex]32[/tex] [tex]cm[/tex] [tex]-12[/tex] [tex]cm[/tex] [tex]=20[/tex] [tex]cm[/tex]
Part D) Find how many square cm greater the rectangle's area is than the square's area if x=4
Find the value of rectangle's area
[tex]A=(3x)(x)=3x^2[/tex] [tex]cm^2[/tex] ------> [tex]A=3(4^2)=48[/tex] [tex]cm^2[/tex]
Find the value of square's area
[tex]A=((3/4)x)^2[/tex] [tex]cm^2[/tex] ------> [tex]A=((3/4)(4))^2 = 9[/tex] [tex]cm^2[/tex]
Find the difference