Respuesta :
Answer:
[tex]\Longrightarrow: \boxed{\sf{25x^2-30x+9}}[/tex]
Step-by-step explanation:
Isolate the term of x from one side of the equation.
Use the perfect square formula.
[tex]\underline{\text{PERFECT SQUARE FORMULA:}}[/tex]
[tex]\Longrightarrow: \sf{(A-B)^2=A^2-2AB+B^2}[/tex]
(5x-3)²
(5x-3)²= (5x)²-2*5x*3+3²
Solve.
[tex]\sf{(5x)^2-2*5x*3+3^2=\boxed{\sf{25x^2-30x+9}}}[/tex]
- Therefore, the final answer is 25x²-30x+9.
Answer:
- 25x² - 30x + 9
Step-by-step explanation:
The identity
- (a - b)² = a² - 2ab + b²
In this case, a = 5x and b = 3, so substituting the values :
- (5x - 3)²
- (5x)² - 2(5x)(3) + (3)²
- 25x² - 30x + 9