Respuesta :

Step-by-step explanation:

[tex]area \: of \: rectangle = length \times \: width[/tex]

Given

[tex]l = 2w - 3[/tex]

using this

[tex]area = l \times w = (2w - 3)(w) = 27[/tex]

[tex]2 {w}^{2} - 3w = 27[/tex]

[tex]2 {w}^{2} - 3w - 27 = 0[/tex]

[tex]2 {w}^{2} - 9w + 6w - 27 = 0[/tex]

[tex]2w(w - 4.5) + 6(w - 4.5) = 0[/tex]

[tex](2w + 6)(w - 4.5) = 0[/tex]

[tex]w = - 3 \: \: or \: \: w= 4.5[/tex]

Since size cannot be negative therefore

[tex]w = 4.5cm[/tex]

[tex]l = 2w - 3 = 9 - 3 = 6[/tex]

Hence length of the rectangle=6m

width of the rectangle=4.5m

Answer:

Let length and breadth of rectangle be x metres and y metres respectively.

xy = 27 ---- eqn 1

x = 2y-3 ---- eqn 2

Sub eqn 2 into eqn 1:

(2y-3) × y = 27

2y² - 3y = 27

2y² - 3y - 27 = 0

(y+3)(2y-9) = 0

y+3=0 or 2y-9=0

y=-3 (rejected) 2y=9

y=4.5

Sub y=4.4 into eqn 2:

x = 2(4.5) - 3

= 6

Hence,

length of rectangle = x metres

= 6m

breadth of rectangle = y metres

= 4.5m