Answer:
First, add totals to the table (see attachment)
Let S = Sourdough
Let C = With cheese
[tex]\sf Probability\:of\:an\:event\:occurring = \dfrac{Number\:of\:ways\:it\:can\:occur}{Total\:number\:of\:possible\:outcomes}[/tex]
[tex]\implies \sf P(S)=\dfrac{1225}{3125}=\dfrac{49}{125}[/tex]
[tex]\implies \sf P(C)=\dfrac{2000}{3125}=\dfrac{16}{25}[/tex]
[tex]\implies \sf P(S \cap C)=\dfrac{800}{3125}=\dfrac{32}{125}[/tex]
For independent events S and C,
[tex]\sf P(S \cap C)=P(S)P(C)[/tex]
[tex]\sf\:As\quad P(S) \cdot P(C)=\dfrac{49}{125} \cdot \dfrac{16}{25}=\dfrac{784}{3125}[/tex]
[tex]\sf And\quad \dfrac{32}{125} \neq \dfrac{784}{3125}[/tex]
[tex]\sf Then \quad P(S \cap C)\neq P(S)P(C)[/tex]
So the events are NOT independent