Respuesta :
A) The equation for the growth of bacteria over time is : n(t) = 27( [tex]e^{25t}[/tex])
B) The number of bacteria the would be in 5 minutes 1 hour is :
n(5mins) = 215.055 , n(1) = 1944132282109.422
C) The time it will take for the bacteria to reach a population of 10,000 is : t = 0.237 hours
Determine the Equation, number of bacteria and time taken
Applying the mathematical growth and decay modelling
a. n(t) = [tex]n_{0}[/tex] [tex]e^{rt}[/tex]
[tex]n_{0}[/tex] = initial amount of bacterial
[tex]e^{rt}[/tex] = exponent
r = rate
t = time
n(t) = 27( [tex]e^{25t}[/tex])
b. for 5 minutes
converting 5 minutes to hours; we divide by 60 minutes
[tex]\frac{5}{60}[/tex] = 0.083 hour
n(5 mins) = 27( [tex]e^{25t}[/tex])
n(5 mins) = 27( [tex]e^{25 * 0.083}[/tex])
n(5 mins) = 27( [tex]e^{2.075}[/tex])
n(5mins) = 27( 7.965)
n(5mins) = 215.055
For 1 hour we have
n(1) = 27( [tex]e^{25t}[/tex])
n(1) = 27( [tex]e^{25 * 1}[/tex])
n(1) = 27( [tex]e^{25}[/tex])
n(1) = 27 * (72004899337.386)
n(1) = 1944132282109.422
c. How long will it take for the bacteria to reach a population of 10,000?
10000 = 27( [tex]e^{25t}[/tex])
[tex]\frac{10000}{27}[/tex] = ( [tex]e^{25t}[/tex])
370.370 = ( [tex]e^{25t}[/tex])
㏑ (370.370 ) = ㏑ ( [tex]e^{25t}[/tex])
5.915 = 25t
[tex]\frac{5.915}{25}[/tex] = t
t = 0.237 hours
In conclusion this type of question can be done by mathematical modelling
Learn more about mathematical modelling: https://brainly.com/question/4960142