Respuesta :

s1m1

Answer:

pi

Step-by-step explanation:

First solve the integral

[tex]\int\ {(1+ cos x} )\, dx[/tex]

[tex]\int\ {1} \, dx +\int\ {cos x} \, dx[/tex]

[tex]\int\ {1} \, dx = x[/tex] and [tex]\int\ {cos x} \, dx = sin x[/tex]

x + sin x

Now consider the limit from 0 to π

[tex]\lim_{0 \to \\pi } (x+sin x)[/tex]

(π +sin π) -(0 +sin 0)

sin π = 0 and sin 0 = 0

π-0

π

Answer:

[tex]\displaystyle \int\limits^\pi_0 {(1+\cos x)} \, dx=\pi[/tex]

Step-by-step explanation:

[tex]\displaystyle \int\limits^\pi_0 {(1+\cos x)} \, dx\\\\=x+\sin x\biggr|^{\pi}_0\\\\=[\pi+\sin\pi]-[0+\sin0]\\\\=\pi[/tex]

Remember your antiderivatives!