Select the correct expressions. 1 Identify each expression that represents the slope of a tangent to the curve y= * +1 at any point (x, y)​

Select the correct expressions 1 Identify each expression that represents the slope of a tangent to the curve y 1 at any point x y class=

Respuesta :

Lanuel

The expressions which represents the slope of a tangent to the curve [tex]y=\frac{1}{x+1}[/tex] at any point (x, y) are:

                                ​[tex]f'(x) =limh \rightarrow 0\frac{-h}{h(x+1)(x+h+1)}\\\\f'(x) =limh \rightarrow 0\frac{-h}{x^2h+2xh+xh^2+h^2 +1}[/tex]

The slope of a tangent to the curve.

Mathematically, the slope of a tangent line to the curve is given by this equation:

[tex]f'(x) =limh \rightarrow 0\frac{f(x+h)-f(x)}{h}[/tex]

Given the function:

[tex]f(x)=y=\frac{1}{x+1}[/tex]

When (x + h), we have:

[tex]f(x+h)=y=\frac{1}{x+h+1}[/tex]

Next, we would find the derivative of f(x):

[tex]f'(x) =limh \rightarrow 0\frac{\frac{1}{x+h+1} -\frac{1}{x+1}}{h}\\\\f'(x) =limh \rightarrow 0\frac{x+1 -(x+h+1)}{h(x+1)(x+h+1)}\\\\f'(x) =limh \rightarrow 0\frac{x+1 -x-h-1}{h(x+1)(x+h+1)}\\\\f'(x) =limh \rightarrow 0\frac{-h}{h(x+1)(x+h+1)}\\\\f'(x) =limh \rightarrow 0\frac{-h}{x^2h+2xh+xh^2+h^2 +1}\\\\f'(x) = \frac{-1}{(x+1)(x+1)} \\\\f'(x) = \frac{-1}{(x+1)^2}[/tex]

Read more on slope of a tangent here: https://brainly.com/question/26015157

#SPJ1