Respuesta :

Answer:

x = 0,  x = 7

Step-by-step explanation:

Given equation:

[tex]\implies \dfrac{x+3}{x-3}+\dfrac{x}{x-5}=\dfrac{x+5}{x-5}[/tex]

Multiply by (x - 5):

[tex]\implies \dfrac{(x+3)(x-5)}{x-3}+\dfrac{x(x-5)}{x-5}=\dfrac{(x+5)(x-5)}{x-5}[/tex]

Factor out common term (x - 5):

[tex]\implies \dfrac{(x+3)(x-5)}{x-3}+x=x+5[/tex]

Multiply by (x - 3):

[tex]\implies \dfrac{(x+3)(x-5)(x-3)}{x-3}+x(x-3)=(x+5)(x-3)[/tex]

Factor out common term (x - 3):

[tex]\implies (x+3)(x-5)+x(x-3)=(x+5)(x-3)[/tex]

Expand brackets:

[tex]\implies x^2-5x+3x-15+x^2-3x=x^2-3x+5x-15[/tex]

Combine like terms:

[tex]\implies 2x^2-5x-15=x^2+2x-15[/tex]

Simplify:

[tex]\implies x^2-7x=0[/tex]

Factor and solve:

[tex]\implies x(x-7)=0[/tex]

[tex]\implies x=0,7[/tex]