Respuesta :

Answer:

Step-by-step explanation:

[tex]13^{-x+10} =9^{-8x} \\13^{-x} *13^{10} =(9^{-8} )^x\\\frac{13^{10} }{13^{x} } =(\frac{1}{9^8} )^x\\(\frac{13}{9^8} )^x=13^{10}\\taking ~log\\x log \frac{13}{9^8} =10log13\\x[log13-log9^8]=10log13\\x[log13-8log9]=10log13\\x=\frac{10 log13}{log13-8log9}[/tex]

Answer:

Exact answer is below

Step-by-step explanation:

Log (base 10) both sides of the equation to get

(-x+10) Log 13   = -8x log 9

- x log 13 + 10 log 13   = -8x log 9

-x log 13 + 8x log 9 = - 10 log 13

x ( -log 13 + 8 log 9) = -10 log 13

x = (-10 log 13 ) / (-log 13 + 8 log 9)   <======exact answer (base 10 log)

 ( calculates out to x =  -  1.70850293274....)