now, there are 12 months in a year, so 18 months is really 18/12 of a year, thus
[tex]~~~~~~ \textit{Simple Interest Earned Amount} \\\\ A=P(1+rt)\qquad \begin{cases} A=\textit{accumulated amount}\dotfill & \$4000\\ P=\textit{original amount deposited}\\ r=rate\to 5\%\to \frac{5}{100}\dotfill &0.05\\ t=years\to \frac{18}{12}\dotfill &\frac{3}{2} \end{cases} \\\\\\ 4000=P[1+(0.05)(\frac{3}{2})]\implies 4000=P(1.075) \\\\\\ \cfrac{4000}{1.075}=P\implies 3720.93\approx P[/tex]