Respuesta :

The true statement concerning ABC is: the angle B is the largest angle - option B.

Law of Cosines

This law is represented by the equation: C²=A²+B²-2ABcosθ, where: A,B and C are the sides of a triangle and θ=angle.

For solving this question, you should apply the Law of Cosines, where:

AB=11

BC=11

AC=14

  • Finding Angle A

BC²=AB²+AC²-2*AB*AC*cos A

11²=11²+14²-2*11*14*cos A

121=121+196-308cosA

308cosA=196+121-121

308cosA=196

cosA=196/308=7/11

arccos (7/11)=50.48°

A=50.48°

  • Finding Angle B

AC²=AB²+BC²-2*AB*BC*cos B

14²=11²+11²-2*11*11*cos B

196=121+121-242cosB

242cosB=-196+121+121

242cosB=46

cosB=46/242=23/11

arccos (23/11)=79.04°

B=79.04°

  • Finding Angle C

AB²=BC²+AC²-2*BC*AC*cos C

11²=11²+14²-2*11*14*cos C

121=121+196-308cosC

308cosC=196+121-121

308cosC=196

cosC=196/308=7/11

arccos (7/11)=50.48°

C=50.48°

Then,B > A and C

Read more about the Law of Cosines here:

brainly.com/question/8288607

#SJ1