Respuesta :

Answer:

Step-by-step explanation:

let p¼ = a, q¼ = b

L.H.S. = (a - b)(a + b)(a² + b²) = (a² - b²)(a² + b²) = (a²)² - (b²)² = p - q = R.H.S.

Answer:

See below ~

Step-by-step explanation:

Identity used :

  • (a - b)(a + b) = a² - b²

Simplifying the LHS :

  • (p¼ - q¼)(p¼ + q¼)(√p + √q)
  • (√p - √q)(√p + √q)
  • p - q
  • Equal to the RHS

∴ Hence, it is proved √