Respuesta :
Answer:
Step-by-step explanation:
let p¼ = a, q¼ = b
L.H.S. = (a - b)(a + b)(a² + b²) = (a² - b²)(a² + b²) = (a²)² - (b²)² = p - q = R.H.S.
Answer:
See below ~
Step-by-step explanation:
Identity used :
- (a - b)(a + b) = a² - b²
Simplifying the LHS :
- (p¼ - q¼)(p¼ + q¼)(√p + √q)
- (√p - √q)(√p + √q)
- p - q
- Equal to the RHS
∴ Hence, it is proved √