Answer:
5 years and 5 months
Step-by-step explanation:
Compound Interest Formula
[tex]\large \text{$ \sf A=P(1+\frac{r}{n})^{nt} $}[/tex]
where:
Given:
Substitute the given values into the formula and solve for t:
[tex]\implies \sf 17474=7790\left(1+\dfrac{0.15}{12}\right)^{12t}[/tex]
[tex]\implies \sf \dfrac{17474}{7790}=\left(1.0125}\right)^{12t}[/tex]
[tex]\implies \sf \ln\left(\dfrac{17474}{7790}\right)=\ln \left(1.0125}\right)^{12t}[/tex]
[tex]\implies \sf \ln\left(\dfrac{17474}{7790}\right)=12t \ln \left(1.0125}\right)[/tex]
[tex]\implies \sf t=\dfrac{\ln\left(\frac{17474}{7790}\right)}{12 \ln \left(1.0125}\right)}[/tex]
[tex]\implies \sf t=5.419413037...\:years[/tex]
Therefore, the money was in the account for 5 years and 5 months (to the nearest month).