Respuesta :

Answer:

-3

Step-by-step explanation:

Given equation:

[tex]\implies (x^4y^{-3})^n=\dfrac{y^9}{x^{12}}[/tex]

[tex]\textsf{Apply exponent rule} \quad \dfrac{1}{a^n}=a^{-n}:[/tex]

[tex]\implies (x^4y^{-3})^n=x^{-12}y^9[/tex]

Rewrite -12 as (4 × -3) and 9 as (-3 × -3):

[tex]\implies (x^4y^{-3})^n=x^{(4 \times -3)}y^{(-3 \times -3)}[/tex]

[tex]\textsf{Apply exponent rule} \quad a^{bc}=(a^b)^c[/tex]:

[tex]\implies (x^4y^{-3})^n=(x^4)^{-3}(y^{-3})^{-3}[/tex]

[tex]\textsf{Apply exponent rule} \quad a^c b^c=(ab)^c[/tex]

[tex]\implies (x^4y^{-3})^n=(x^4y^{-3})^{-3}[/tex]

Therefore, the missing value is -3