1. The total monthly cost, y, for smartphone service depends
on the number of text messages,
Text Messages, X:
0
10
20
30
Cost ($), y
40.00
42.00
44.00 46.00
slope:
y-intercept:
equation:

Respuesta :

  • (0,40)
  • (10,42)
  • (20,44)
  • (30,46)

Slope

  • m=42-40/10
  • m=2)10
  • m=1/5

Equation in point slope form

  • y-40=1/5x
  • y=1/5x+40

slope=1/5

y intercept=40

Answer:

[tex]\textsf{slope}=\dfrac{1}{5}[/tex]

[tex]\textsf{Equation}: \quad y=\dfrac{1}{5}x+40[/tex]

y-intercept = 40

Step-by-step explanation:

[tex]\large \begin{array}{| c | c |}\cline{1-2} \sf Text\:Messages\: & \sf Cost (\$) \\x& y \\\cline{1-2} 0 & 40.00\\\cline{1-2} 10 & 42.00\\\cline{1-2} 20 & 44.00\\\cline{1-2} 30 & 46.00\\\cline{1-2}\end{array}[/tex]

Take two ordered pairs from the table:

[tex]\textsf{let}\:(x_1,y_1)=(0, 40)[/tex]

[tex]\textsf{let}\:(x_2,y_2)=(10, 42)[/tex]

Substitute them into the slope formula and solve for m:

[tex]\textsf{slope}\:(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{42-40}{10-0}=\dfrac{1}{5}[/tex]

Use the point-slope form of a linear equation with the found value of m and the point (0, 40):

[tex]\implies y-y_1=m(x-x_1)[/tex]

[tex]\implies y-40=\dfrac{1}{5}(x-0)[/tex]

[tex]\implies y=\dfrac{1}{5}x+40[/tex]

Slope-intercept form of a linear equation:  [tex]y=mx+b[/tex]

(where m is the slope and b is the y-intercept).

Comparing with the calculated equation:

y-intercept = 40