Respuesta :

The second attachment I solved in your another question.You may refer to that.

#1

Apply Pythagorean theorem

x²=10²-6²

  • x²=100-36
  • x²=64
  • x=8cm

Answer:

1)  8 cm

2)  15 ft

3)  3√10 ft = 9.5 ft (nearest tenth)

Step-by-step explanation:

Pythagoras’ Theorem

[tex]a^2+b^2=c^2[/tex]

(where a and b are the legs, and c is the hypotenuse, of a right triangle)

Question 1

Given:

  • a = 6
  • b = x
  • c = 10

Substitute the given values into the equation and solve for x:

[tex]\implies 6^2+x^2=10^2[/tex]

[tex]\implies 36+x^2=100[/tex]

[tex]\implies x^2=100-36[/tex]

[tex]\implies x^2=64[/tex]

[tex]\implies x=\sqrt{64}[/tex]

[tex]\implies x=8\: \sf cm[/tex]

Question 2

Given:

  • a = 9 ft
  • b = 12 ft

Substitute the given values into the equation and solve for c:

[tex]\implies 9^2+12^2=c^2[/tex]

[tex]\implies 81+144=c^2[/tex]

[tex]\implies c^2=225[/tex]

[tex]\implies c=\sqrt{225}[/tex]

[tex]\implies c=15\: \sf ft[/tex]

Question 3

Given:

  • a = 3 ft
  • b = 9 ft

Substitute the given values into the equation and solve for c:

[tex]\implies 3^2+9^2=c^2[/tex]

[tex]\implies 9+81=c^2[/tex]

[tex]\implies c^2=90[/tex]

[tex]\implies c=\sqrt{90}[/tex]

[tex]\implies c=\sqrt{9 \cdot 10}[/tex]

[tex]\implies c=\sqrt{9}\sqrt{10}[/tex]

[tex]\implies c=3\sqrt{10}\: \sf ft[/tex]