Using factoring, which values are the solutions to the quadratic equation 2m2+7m−30=0?

A: m = - 10 or m = 3^2
B: m = -6 or m = 5^2
C: m = -5 or m = 3
D: m = 6 or m = -5^2

Respuesta :

Answer:

B: m = -6 or m = 5/2

Explanation:

[tex]\rightarrow \sf 2m^2 +7m - 30 = 0[/tex]

breakdown

[tex]\rightarrow \sf 2m^2 +12m -5m- 30 = 0[/tex]

take out common factor

[tex]\rightarrow \sf 2m(m +6) -5(m+ 6) = 0[/tex]

collect into groups

[tex]\rightarrow \sf (2m -5)(m+ 6) = 0[/tex]

set to zero

[tex]\rightarrow \sf 2m -5=0, \ m+ 6 = 0[/tex]

change sides

[tex]\rightarrow \sf m=2.5, \ m= -6[/tex]

Answer:

[tex]\sf B. \quad m=-6 \quad or \quad m=\dfrac{5}{2}[/tex]

Step-by-step explanation:

Given equation:

[tex]\sf 2m^2+7m-30=0[/tex]

Factor:

[tex]\implies \sf 2m^2+12m-5m-30=0[/tex]

[tex]\implies \sf 2m(m+6)-5(m+6)=0[/tex]

[tex]\implies \sf (2m-5)(m+6)=0[/tex]

Therefore:

[tex]\implies \sf 2m-5=0 \implies m=\dfrac{5}{2}[/tex]

[tex]\implies \sf m+6=0 \implies m=-6[/tex]

Therefore, the solutions are:

[tex]\sf m=-6 \quad or \quad m=\dfrac{5}{2}[/tex]