Respuesta :
The equivalent expression of [tex]4\log_{\frac 12}w + 2\log_{\frac 12}(u - 3)[/tex] is [tex]\log_{\frac 12}(w^4 *(u - 3)^2)[/tex]
How to determine the single expression?
The expression is given as:
[tex]4\log_{\frac 12}w + 2\log_{\frac 12}(u - 3)[/tex]
Apply the law of logarithm on both terms
[tex]\log_{\frac 12}w^4 + \log_{\frac 12}(u - 3)^2[/tex]
Apply the product law of logarithm
[tex]\log_{\frac 12}(w^4 *(u - 3)^2)[/tex]
Hence, the equivalent expression of [tex]4\log_{\frac 12}w + 2\log_{\frac 12}(u - 3)[/tex] is [tex]\log_{\frac 12}(w^4 *(u - 3)^2)[/tex]
Read more about equivalent expression at:
https://brainly.com/question/2972832
#SPJ4