Respuesta :

Step-by-step explanation:

8) Consider,

[tex] \frac{1}{1 + \sin(x) } [/tex]

Multiplying And Dividing By 1-sinx

[tex] \frac{1}{1 + \sin(x) } \times \frac{1 - \sin(x) }{1 - \sin(x) } [/tex]

[tex] \frac{1 - \sin(x) }{(1 + \sin(x) )(1 - \sin(x)) } [/tex]

We know (a+b)(a-b)=a²-b²

[tex] \frac{1 - \sin(x) }{1 - \sin ^{2} (x) } [/tex]

We know that sin²x+cos²x=1

cos²x=1-sin²x,

uisng this we get,

[tex] \frac{1 - \sin(x) }{ \cos ^{2} (x) } [/tex]

[tex] \frac{1}{ \cos ^{2} (x) } - \frac{ \sin(x) }{cos ^{2} (x)} [/tex]

We know that 1/cosx=secx and sinx/cosx=tanx

Using this we get,

[tex] \sec {}^{2} (x) - \frac{ \tan(x) }{ \cos(x) } [/tex]

Hence Proved