Respuesta :

Answer:

C. [tex]m\angle{B}=61^\circ[/tex], a = 15, b = 28

Step-by-step explanation:

using sine to find side a (aka the side opposite angle A):

[tex]sinA=\frac{a}{32}[/tex]

[tex]32\cdot{sin(28)^\circ}=a[/tex]

a = 15

Now, angle B can be found by subtracting the other 2 angle measures from 180 (the total interior angle measure for triangles): 180 - (28+91) = 61

Substitute this value into another sine equation to find side b:

[tex]sinB=\frac{b}{32}[/tex]

[tex]32\cdot{sin(61)^\circ}=b[/tex]

b = 27.99 or about 28