Respuesta :

Answer:

[tex]\textsf{C.} \quad x=\dfrac{1}{6}(y-15)^2-\dfrac{5}{2}[/tex]

Step-by-step explanation:

As the directrix is vertical, the parabola is sideways.

Conic form of a sideways parabola with a horizontal axis of symmetry:

[tex](y-k)^2=4p(x-h)\quad \textsf{where}\:p\neq 0[/tex]

  • Vertex = (h, k)
  • Focus = (h + p, k)
  • Directrix:  x = (h - p)
  • Axis of symmetry:  y = k

If p > 0, the parabola opens to the right, and if p < 0, the parabola opens to the left.

Given:

  • Focus:  (-1, 15)
  • Directrix:  x = -4

Therefore:

  • k = 15
  • h + p = -1
  • h - p = -4

Add  h + p = -1  to  h - p = -4  to eliminate p:

⇒ 2h = -5

⇒ h = -5/2

⇒ p = 3/2

Substituting the found values into the formula:

[tex]\implies (y-15)^2=4\left(\dfrac{3}{2}\right)\left(x+\dfrac{5}{2}\right)[/tex]

[tex]\implies (y-15)^2=6\left(x+\dfrac{5}{2}\right)[/tex]

[tex]\implies \dfrac{1}{6}(y-15)^2=x+\dfrac{5}{2}[/tex]

[tex]\implies x=\dfrac{1}{6}(y-15)^2-\dfrac{5}{2}[/tex]

Ver imagen semsee45