Respuesta :

aphrog

Answer:

273.2 units²

Step-by-step explaanation:

Area of a circle = [tex]\pi[/tex]r²

Area of red circle = 16 units² x [tex]\pi[/tex]

= 256 units² [tex]\pi[/tex]

= 804.224 units²

Area of blue circle = 13 units² x [tex]\pi[/tex]

= 169 units² [tex]\pi[/tex]

= 530.914 units²

Area of desired portion = area of bigger circle - area of smaller circle

804.224 units² - 530.914 units² = 273.31 units²

≈ 273.2 units²

Answer:

273.2 units²

Step-by-step explanation:

Formula

[tex]\text{Area of a circle}=\pi r^2 \quad \text{(where r is the radius)}[/tex]

Area of Smaller circle

Given:

  • r = TP = 13

[tex]\implies \text{Area of smaller circle} \rm=\pi (13)^2=169\pi \:units^2[/tex]

Area of Larger circle

Given:

  • r = RP = 16

[tex]\implies \text{Area of larger circle} \rm=\pi (16)^2=256\pi \:units^2[/tex]

Difference in areas

[tex]\begin{aligned}\rm Difference & = \text{Area of larger circle}-\text{Area of smaller circle}\\& = \rm 256 \pi - 169 \pi \\& = \rm 87 \pi \\& = \rm 87 \cdot 3.14\\& = 273.18\\& = \rm 273.2\:units^2\:(nearest\:tenth)\end{aligned}[/tex]