Respuesta :

[tex]\\ \rm\Rrightarrow 200=5(3)^{x-1}[/tex]

[tex]\\ \rm\Rrightarrow 40=3^{x-1}[/tex]

[tex]\\ \rm\Rrightarrow ln(4(10))=ln3^{x-1}[/tex]

[tex]\\ \rm\Rrightarrow ln4+ln10=(x-1)ln3[/tex]

[tex]\\ \rm\Rrightarrow x=\dfrac{ln4+ln10}{ln3}+1[/tex]

Answer:

[tex]x=\dfrac{\ln 40}{\ln3}+1[/tex]

Step-by-step explanation:

Given equation:

[tex]200=5(3)^{x-1}[/tex]

Divide both sides by 5:

[tex]\implies 40=(3)^{x-1}[/tex]

Take natural logs of both sides:

[tex]\implies \ln 40=\ln (3)^{x-1}[/tex]

[tex]\textsf{Apply the power law}: \quad \ln x^n=n \ln x[/tex]

[tex]\implies \ln 40=(x-1)\ln 3[/tex]

Divide both sides by ln 3:

[tex]\implies \dfrac{\ln 40}{\ln3}=x-1[/tex]

Add 1 to both sides:

[tex]\implies x=\dfrac{\ln 40}{\ln3}+1[/tex]