Respuesta :
Given:
Two different cylinders have the same volume.
To find:
The height of the cylinder 2
Solution:
Volume of the cylinder 1:
[tex]v = \pi {r}^{2} h[/tex]
[tex]v = \pi \times {3}^{2} \times 24[/tex]
[tex]v = 678.58401 \: {ft}^{3} [/tex]
[tex]v = 678.58 \: {ft}^{3} (2 \: d.p)[/tex]
Height of the cylinder 2:
[tex]h = \frac{v}{\pi {r}^{2} } [/tex]
[tex]h = \frac{687.58}{\pi \times {6}^{2} } [/tex]
[tex]h= 5 .99996 \: ft[/tex]
[tex]\huge\boxed{\sf{h=6 \: ft}}[/tex]
Hence, the height of the cylinder 2 is 6 feet.