100 Points for this Question. PLEASE HELP ASAP.

[tex]\\ \rm\Rrightarrow \dfrac{AB}{AD}=\dfrac{BC}{CD}[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{18}{x}=\dfrac{19}{11}[/tex]
[tex]\\ \rm\Rrightarrow 19x=198[/tex]
[tex]\\ \rm\Rrightarrow x=10.4[/tex]
Answer:
x = 10.4 (nearest tenth)
Step-by-step explanation:
Angle Bisector Theorem
The angle bisector of any angle in a triangle will divide the side opposite the bisected angle in the ratio of the sides containing the angle.
Therefore:
AD : DC = BA : BC
Given:
Substituting the given values into the ratio and solving for x:
[tex]\implies \sf x : 11 = 18 : 19[/tex]
[tex]\implies \sf \dfrac{x}{11}=\dfrac{18}{19}[/tex]
[tex]\implies \sf 19x=18 \cdot 11[/tex]
[tex]\implies \sf 19x=198[/tex]
[tex]\implies \sf x=\dfrac{198}{19}[/tex]
[tex]\implies \sf x=10.4 \: (nearest\:tenth)[/tex]