Respuesta :

Answer:

see explanation

Step-by-step explanation:

(a)

calculate the gradient (slope) m using the slope formula

m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]

with (x₁, y₁ ) = O (0, 0 ) and (x₂, y₂ ) = A (- 5, 2 )

[tex]m_{OA}[/tex] = [tex]\frac{2-0}{-5-0}[/tex] = [tex]\frac{2}{-5}[/tex] = - [tex]\frac{2}{5}[/tex]

(b)

the angle between a tangent and a radius at the point of contact is 90°

given a line with slope m then the gradient of a line perpendicular to it is

[tex]m_{perpendicular}[/tex] = - [tex]\frac{1}{m}[/tex] = - [tex]\frac{1}{-\frac{2}{5} }[/tex] = [tex]\frac{5}{2}[/tex]

(c)

the equation of a line in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept )

here m = [tex]\frac{5}{2}[/tex] , then

y = [tex]\frac{5}{2}[/tex] x + c ← is the partial equation

to find c substitute A (- 5, 2 ) into the partial equation

2 = - [tex]\frac{25}{2}[/tex] + c ⇒ c = 2 + [tex]\frac{25}{2}[/tex] = [tex]\frac{29}{2}[/tex]

y = [tex]\frac{5}{2}[/tex] x + [tex]\frac{29}{2}[/tex] ← equation of tangent