Respuesta :

Perpendicular Line: y = 3x - 10

Explanation:

[tex]\sf {Given:} \ y = -\dfrac{1}{3} x-4[/tex]

Comparing it with slope intercept formula:  [tex]\bf y = mx + b[/tex]

  • where m is the slope, b is y intercept

Identify the slope for this particular function:

[tex]\star \ \ \sf slope = -\dfrac{1}{3}[/tex]

Now given that the line passes perpendicularly, then the slope shall be negatively inverse of the parallel slope.

[tex]\implies \sf \ perpendicular \ slope : \ -(\dfrac{1}{m} ) \ = \ -(\dfrac{1}{-1/3} ) \ = \ 3[/tex]

Now, find the equation:

[tex]y -y_1 = m(x - x_1) \ \ \ \ \textsc where \ (x_1, y_1 ) \ are \ points[/tex]     given points : (6, 8)

equation:

[tex]\rightarrow \sf y - 8 = 3(x-6)[/tex]

[tex]\rightarrow \sf y = 3x-18+8[/tex]

[tex]\rightarrow \sf y = 3x-10[/tex]

  • y=-1/3x-4

On comparing to y=mX+b

  • Slope =m=-1/3

Perpendicular lines have slopes negative reciprocal to each other

Slope of perpendicular line

  • 3

Equation in point slope form

  • y-8=3(x-6)
  • y-8=3x-18
  • y=3x-10