Question 39 of 40
The circle below has a radius of 8 centimeters. What is the area of the shaded
region?
X
120°
8 cm
OA. 32 square centimeters
B. 8 square centimeters
64
3
square centimeters
square centimeters
O C.
O D.
16
3

Question 39 of 40 The circle below has a radius of 8 centimeters What is the area of the shaded region X 120 8 cm OA 32 square centimeters B 8 square centimeter class=

Respuesta :

Convert angle to radians

  • 120=2π/3

So

Area

  • r²Ø/2
  • 8²(2π/3)(1/2)
  • 64π/3cm²

Answer:

[tex]\textsf{C.} \quad \dfrac{64 \pi}{3} \: \sf square\:centimeters[/tex]

Step-by-step explanation:

Formula

[tex]\textsf{Area of a sector of a circle}=\left(\dfrac{\theta}{360^{\circ}}\right) \pi r^2[/tex]

[tex]\textsf{(where r is the radius and the angle }\theta \textsf{ is measured in degrees)}[/tex]

Given:

  • [tex]\theta[/tex] = 120°
  • r = 8 cm

Substitute the given values into the formula and solve for Area:

[tex]\large \begin{aligned}\implies \textsf{Area} & =\left(\dfrac{120^{\circ}}{360^{\circ}}\right) \pi (8)^2\\\\& =\left(\dfrac{1}{3}\right) \pi (64)\\\\& =\dfrac{64}{3} \pi \: \sf cm^2\end{aligned}[/tex]