h(n)=63⋅(− 3 1 ​ ) n h, left parenthesis, n, right parenthesis, equals, 63, dot, left parenthesis, minus, start fraction, 1, divided by, 3, end fraction, right parenthesis, start superscript, n, end superscript Complete the recursive formula of h(n)h(n)h, left parenthesis, n, right parenthesis.

Respuesta :

The recursive function is h(n) = -1/3h(n - 1) where h(0) = 63

How to complete the recursive function?

The function is given as:

[tex]h(n) = 63* (-\frac{1}{3})^n[/tex]

Set n to 0

[tex]h(0) = 63* (-\frac{1}{3})^0[/tex]

Evaluate

h(0) = 63

This means that the function h(n) has the following parameters:

First term = 63

Rate = -1/3

Hence, the recursive function is h(n) = -1/3h(n - 1) where h(0) = 63

Read more about recursive function at:

https://brainly.com/question/1275192

#SPJ1