In the figure, ABCD is a cyclic quadrilateral in which AC and BD are its diagonals. If ∠DBC = 55° and ∠BAC 45°, Find ∠BCD.

Given,
ABCD is a cyclic quadrilateral in which AC and BD are its diagonals.
[tex] \: \: \: \: \: \: \: \: \: \: \: \:[/tex]
[tex] \sf∠DBC= 55° and ∠BAC = 45°[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \:[/tex]
[tex] \sf∠CAD = ∠DBC= 55° (Angles \: in \: the \: same \: segment)[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \:[/tex]
Thus,
[tex] \sf∠DAB=∠CAD + ∠BAC[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \:[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \sf= 55° + 45° [/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \:[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \sf= 100°[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \:[/tex]
We know that the opposite angles of a cyclic quadrilateral are supplimentary.
[tex] \: \: \: \: \: \: \: \: \: \: \: \:[/tex]
[tex] \sf ∠DAB +∠BCD = 180°[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \:[/tex]
[tex] \sf∠BCD = 180°-100° =80°[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \:[/tex]
[tex] \pink{\boxed{\sf{∠BCD = 80°}}}[/tex]
Answer:
∠BCD = 80°
Step-by-step explanation:
ABCD is a cyclic Quadrilateral.
∠DBC = 55°
∠BAC = 45°
∠BDC
=> ∠BAC = ∠BDC
=> 45° = ∠BAC { Angles of same segment BC}
In Triangle BCD
=> ∠BDC + ∠DBS + ∠BCD = 180°
=> 45° + 55° + ∠BCD = 180°
=> 100° + ∠BDC = 180°
=> ∠BDC = 180-100
=> 80° ans.