Help me with this extremely hard differentiation question , [Scroll] >>

[tex]\huge\frac{d}{dx}[\sum_{n=0}^{∞}[(\frac{(-1) ^ {n}}{(2n+1)!})(\frac{1}{1+e^{x}})^{2n+1}] ][/tex] ​

Respuesta :

Answer:

[tex]f'(x)=\displaystyle -\frac{e^x}{(1+e^x)^2}\cos\biggr(\frac{1}{1+e^x}\biggr)[/tex]

Step-by-step explanation:

Recall the power series [tex]\sin(x)=\displaystyle \sum\limits^\infty_{n=0}(-1)^n\frac{x^{2n+1}}{(2n+1)!}[/tex].

In this case, [tex]x[/tex] is replaced with [tex]\displaystyle \frac{1}{1+e^x}[/tex], so our power series actually works out to be [tex]\displaystyle \sin\biggr(\frac{1}{1+e^x}\biggr) =\sum\limits^\infty_{n=0}(-1)^n\frac{\bigr(\frac{1}{1+e^x}\bigr)^{2n+1}}{(2n+1)!}[/tex]! Amazing, huh?

Now, we find the derivative of the function by using the chain rule:

[tex]\displaystyle \frac{d}{dx}\sin\biggr(\frac{1}{1+e^x}\biggr)=\frac{d}{dx}\biggr(\frac{1}{1+e^x}\biggr)*\cos\biggr(\frac{1}{1+e^x}\biggr)=-\frac{e^x}{(1+e^x)^2}\cos\biggr(\frac{1}{1+e^x}\biggr)[/tex]

You didn't specify if you just wanted the derivative of the series to be a function or a series, so I'm going to assume you want the function. Let me know if there's more to your problem.