We know:
[tex]{{ \diamond\diamond \quad{ \boxed{ \pink{ \sf{Volume \: of \: Sphere ={ \large{ \frac{4}{3} \pi {r}^{3} }}}}}}} \quad \diamond \diamond}[/tex]
where,
[tex] \: [/tex]
[tex]{\longrightarrow {\sf{Volume \: of \: Sphere \: = \: { \large {\frac{4}{3} \times \frac{22}{7} \times {6}^{3} }}}}}[/tex]
[tex] {\longrightarrow {\sf{Volume \: of \: Sphere \: = \: { \large{ \frac{88}{21} \times 6 \times 6 \times 6 }}}}}[/tex]
[tex] {\longrightarrow {\sf{Volume \: of \: Sphere \: = \: { \large{ \frac{88}{21} \times 216 }}}}} [/tex]
[tex] {\longrightarrow {\sf{Volume \: of \: Sphere \: = \: { \large{ \frac{19008}{21} }}}}} [/tex]
[tex] {\longrightarrow {\sf{Volume \: of \: Sphere \: = \: { \large{ { \boxed{ \red{ \sf{905.14 {yards}^{3} }}}}}}}}} [/tex]
Thus, The volume of Sphere is 905.14yards³. (Approx.)