Respuesta :

See below for the proof of the trigonometry identity [tex]\frac{\tan^2(A)}{\tan(A) - 1} + \frac{\cot(A)}{1 - \tan(A)} =1 + \sec(A)\csc(A)[/tex]

How to prove the trigonometry identity?

The trigonometry equation is given as:

[tex]\frac{\tan^2(A)}{\tan(A) - 1} + \frac{\cot(A)}{1 - \tan(A)} =1 + \sec(A)\csc(A)[/tex]

Rewrite the equation as:

[tex]\frac{\tan^2(A) }{\tan(A) - 1} - \frac{\cot(A)}{ \tan(A) - 1} =1 + \sec(A)\csc(A)[/tex]

Take LCM

[tex]\frac{\tan^2(A) - \cot(A)}{ \tan(A) - 1} =1 + \sec(A)\csc(A)[/tex]

Express cot(A) as 1/tan(A)

[tex]\frac{\tan^2(A) - \frac{1}{\tan(A)}}{ \tan(A) - 1} =1 + \sec(A)\csc(A)[/tex]

Take LCM

[tex]\frac{\tan^3(A) - 1}{\tan(A)(\tan(A) - 1)} =1 + \sec(A)\csc(A)[/tex]

Apply the difference of two cubes on the numerator

[tex]\frac{(\tan(A) - 1)(\tan^2(A) + \tan(A) + 1)}{\tan(A)(\tan(A) - 1)} =1 + \sec(A)\csc(A)[/tex]

Cancel out the common factors

[tex]\frac{\tan^2(A) + \tan(A) + 1}{\tan(A)} =1 + \sec(A)\csc(A)[/tex]

Rewrite as:

[tex]\frac{\tan(A) + \tan^2(A) + 1}{\tan(A)} =1 + \sec(A)\csc(A)[/tex]

Split the fraction

[tex]1 + \frac{\tan^2(A) + 1}{\tan(A)} =1 + \sec(A)\csc(A)[/tex]

Express [tex]\tan^2(A) + 1[/tex] as [tex]\sec^2(A)[/tex]

[tex]1 + \frac{sec^2(A)}{\tan(A)} =1 + \sec(A)\csc(A)[/tex]

Divide [tex]\sec^2(A)[/tex] by [tex]\tan(A)[/tex]

[tex]1 + \frac{1}{\sin(A)\cos(A)} = 1 + \sec(A)\csc(A)[/tex]

Take the inverse of sin and cosine

[tex]1 + \sec(A)\csc(A) = 1 + \sec(A)\csc(A)[/tex]

Both sides of the equation are the same.

Hence, the trigonometry identity [tex]\frac{\tan^2(A)}{\tan(A) - 1} + \frac{\cot(A)}{1 - \tan(A)} =1 + \sec(A)\csc(A)[/tex] has been proved

Read more about trigonometry identity at:

https://brainly.com/question/7331447

#SPJ1