Respuesta :

Answer:

Rearrange both inequalities to make y the subject.

Momentarily swap the inequality sign for an equals sign in order to calculate two points for each line.

Inequality 1

[tex]2y \leq x-10[/tex]

[tex]\implies y < \dfrac{1}{2}x-5[/tex]

[tex]x=0\implies y=\dfrac{1}{2}(0)-5 \implies (0,-5)[/tex]

[tex]x=4 \implies y=\dfrac{1}{2}(4)-5 \implies (4,-3)[/tex]

Inequality 2

[tex]x+y\leq -3[/tex]

[tex]\implies y\leq -x-3[/tex]

[tex]x=0\implies y=-(0)-3\implies (0,-3)[/tex]

[tex]x=4\implies y=-(4)-3\implies (4,-7)[/tex]

When graphing inequalities

< or > : dashed line

≤ or ≥ : solid line

< or ≤ : shade below the line

> or ≥ : shade above the line

Therefore,

Inequality 1:  plot points (0, -5) and (4, -3) and draw a solid line through them.

Inequality 2: plot points (0, -3) and (4, -7) and draw a solid line through them.

Shade the area below both lines from where the lines intersect.

Ver imagen semsee45

Answer:

See below ~

Step-by-step explanation:

Inequality 1 :

  • Convert into y = mx + b form
  • 2y ≤ x - 10
  • y ≤ x/2 - 5

Taking 2 points :

  • 0 ≤ x/2 - 5
  • x/2 ≥ 5
  • x ≥ 10
  • Point 1 = (10, 0)

  • y ≤ 0 - 5
  • y ≤ -5
  • Point 2 = (0, -5)

Inequality 2 :

  • x + y ≤ -3
  • y ≤ -x - 3

Taking 2 points :

  • 0 ≤ -x - 3
  • x ≤ -3
  • Point 1 = (-3, 0)

  • y ≤ 0 - 3
  • y ≤ - 3
  • Point 2 = (0, -3)

Plot the two 2 lines using the 2 points and shade as per the sign of the inequality. The result will be this graph :

Ver imagen Аноним