Respuesta :

[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]

Let's solve for x and y ~

Since the given triangle is a right angled triangle, we can use Trigonometric ratios here to get the required values

[tex]\qquad \sf  \dashrightarrow \: \tan(45 \degree) = \dfrac{y}{2 \sqrt{2} } [/tex]

[tex]\qquad \sf  \dashrightarrow \: 1= \dfrac{y}{2 \sqrt{2} } [/tex]

[tex]\qquad \sf  \dashrightarrow \:y = 2 \sqrt{2} \: \: units[/tex]

Now, let's get to x ~

[tex]\qquad \sf  \dashrightarrow \: \sin(45 \degree) = \dfrac{y}{x} [/tex]

[tex]\qquad \sf  \dashrightarrow \: \dfrac{1}{ \sqrt{2} } = \dfrac{2 \sqrt{2} }{x} [/tex]

[tex]\qquad \sf  \dashrightarrow \:x = 2 \sqrt{2}{} \times \sqrt{2} [/tex]

[tex]\qquad \sf  \dashrightarrow \:x = 2 \times 2[/tex]

[tex]\qquad \sf  \dashrightarrow \:x = 4 \: \: units[/tex]

I hope you understood the whole procedure ~