Respuesta :

Given the differential equation

[tex]\dfrac{dy}{dx} = 12x^2 - 8x[/tex]

integrating both sides with respect to [tex]x[/tex] yields

[tex]\displaystyle \int \frac{dy}{dx} \, dx = \int (12x^2 - 8x) \, dx[/tex]

[tex]y = 4x^3 - 4x^2 + C[/tex]

Use the given point to solve for the constant [tex]C[/tex] :

[tex]-46 = 4(-2)^3 - 4(-2)^2 + C \implies C = 2[/tex]

Then the equation of the curve is

[tex]\boxed{y = 4x^3 - 4x^2 + 2}[/tex]

On the off-chance you instead meant something like

[tex]\dfrac{dy}{dx} = \dfrac{12x^2}{2 - 8x} = -\dfrac{3x}2 - \dfrac38 + \dfrac3{8(1-4x)}[/tex]

integrating would instead give

[tex]y = -\dfrac{3x^2}4 - \dfrac{3x}8 - \dfrac3{32} \ln|1-4x| + C[/tex]

Then

[tex]-46 = -\dfrac94 - \dfrac3{32} \ln(9) + C \implies C = \dfrac3{32}\ln(9) - \dfrac{175}4[/tex]

and the particular solution follows. (But I suspect this is *not* what you meant.)