Find the volume of this sphere.
Use 3 for TT.
V ≈ [?]ft³ 3
14 ft
V = πr³
Tr3

[tex] \sf{\qquad\qquad\huge\underline{{\sf Answer}}} [/tex]
Here we go ~
Given :
Let's calculate volume of the sphere ~
[tex]\qquad \sf \dashrightarrow \:v = \dfrac{4}{3} \pi {r}^{3} [/tex]
[tex]\qquad \sf \dashrightarrow \:v = \dfrac{4}{3} \sdot3 \sdot {7}^{3} [/tex]
[tex]\qquad \sf \dashrightarrow \:v = 4 \sdot343[/tex]
[tex]\qquad \sf \dashrightarrow \:v = 1372 \: \: ft {}^{3} [/tex]
First, we'll have to find the radius.
[tex]\large\boxed{\bold{r= \frac{d}{2}}}[/tex]
Let's solve!
To find the radius we'll have to divide the diameter by 2.
Substitute the values according to the formula.
[tex]r=\frac{14}{2}[/tex]
[tex]\bold{r= 7 \: ft}[/tex]
Now, we can find the volume of the given sphere.
[tex]\large\boxed{\bold{V= \frac{4}{3}\pi{r}^{3}}}[/tex]
[tex]\large\boxed{\bold{\red\pi\red=\red3}}[/tex]
Substitute the values according to the formula.
[tex]V= \frac{4}{3}\times3\times{7}^{3}[/tex]
[tex]\large\boxed{\bold{V= 1372 \: {ft}^{3}}}[/tex]
The answer is a whole number so we won't have to round off.
Hence, the volume of the given sphere is 1372 cubic feets.