Respuesta :

Answer:

  • The range of the given function is  [6, + ∞)

Step-by-step explanation:

It is assumed the function is:

  • [tex]f(x)=\sqrt{x-8} +6[/tex]

We know the square root is non-negative, so:

  • x - 8 ≥ 0  therefore the function gets values

  • f(x) ≥ 0 + 6
  • f(x) ≥ 6

We can show this as:

  • f(x) ∈ [6, + ∞)

Answer:

Range = [6, ∞)

Step-by-step explanation:

The range of a function is its output values (y-values).  

One way to find the range of the given function is to determine the series of translations that have transformed the given function from the parent function.

Translations

For a > 0

[tex]f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]

[tex]f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]

[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]

[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]

Parent function:  [tex]f(x)=\sqrt{x}[/tex]

  • Domain:  [0, ∞)
  • Range:  [0, ∞)

Given function:  [tex]f(x)=\sqrt{x-8}+6[/tex]

The parent function has been:

  Translated 8 units right:  [tex]f(x-8)=\sqrt{x-8}[/tex]

  then translated 6 units up:  [tex]f(x-8)+6=\sqrt{x-8}+6[/tex]

If the function has been translated 8 units right, the domain will be:

  • Domain:  [0 + 8, ∞) = [8, ∞)

Similarly, if the function has been translated 6 units up, the range will be:

  • Range:  [0 + 6, ∞) = [6, ∞)
Ver imagen semsee45