Respuesta :

Find appropriate f(x) first

  • 2 1/2=5/2
  • 3 1/3=10/3

Now

  • y=-10/3x+5/2

So

InterchAnge x and y

  • x=-10/3y+5/2

Find y which is the inverse

  • x-5/2=-10/3y
  • y=-3/10x+5/2×3/10
  • y=-3/10x+3/4

x intercept

  • 10/3x+3/4=0
  • x=-3/4×3/10
  • x=-9/40

Graph attached

Ver imagen Аноним

Answer:

[tex]\textsf{Inverse function}: \quad f^{-1}(x)=\dfrac{3}{4}-\dfrac{3}{10}x[/tex]

[tex]x\textsf{-intercept}:\quad\left(\dfrac{5}{2},0\right)[/tex]

Step-by-step explanation:

Given:

[tex]f(x)=2\frac{1}{2}-3\frac{1}{3}x[/tex]

Rewrite the function so it is a rational function

Convert the mixed numbers to improper fractions:

[tex]\implies f(x)=\dfrac{5}{2}-\dfrac{10x}{3}[/tex]

Make the denominators the same:

[tex]\implies f(x)=\dfrac{3 \cdot 5}{3\cdot 2}-\dfrac{2 \cdot 10x}{2 \cdot 3}[/tex]

[tex]\implies f(x)=\dfrac{15}{6}-\dfrac{20x}{6}[/tex]

Combine:

[tex]\implies f(x)=\dfrac{15-20x}{6}[/tex]

The inverse of a function is its reflection in the line y = x

To find the inverse, make x the subject

Replace f(x) with y:

[tex]\implies y=\dfrac{15-20x}{6}[/tex]

[tex]\implies 6y=15-20x[/tex]

[tex]\implies 6y-15=-20x[/tex]

[tex]\implies x=\dfrac{-6y+15}{20}[/tex]

[tex]\implies x=\dfrac{15-6y}{20}[/tex]

Replace x with [tex]f^{-1}(x)[/tex] and y with x:

[tex]\implies f^{-1}(x)=\dfrac{15-6x}{20}[/tex]

If necessary, convert back into the same format as the original function:

[tex]\implies f^{-1}(x)=\dfrac{15}{20}-\dfrac{6x}{20}[/tex]

[tex]\implies f^{-1}(x)=\dfrac{3}{4}-\dfrac{3}{10}x[/tex]

The x-intercept of the inverse function is the point at which it crosses the x-axis, so when [tex]f^{-1}(x)=0[/tex]

[tex]\implies \dfrac{15-6x}{20}=0[/tex]

[tex]\implies 15-6x=0[/tex]

[tex]\implies 6x=15[/tex]

[tex]\implies x=\dfrac{15}{6}=\dfrac{5}{2}[/tex]

Therefore, the x-intercept is:

[tex]\left(\dfrac{5}{2},0\right)[/tex]

Ver imagen semsee45