Respuesta :

The initial value equation is [tex]y = \frac 12(3 - e^{-2x})[/tex]

How to solve the initial value?

The equation is given as:

[tex]\frac{dy}{dx} +2y = 3[/tex]

Where

Y(0) = 1

Subtract 2y from both sides in the equation

[tex]\frac{dy}{dx} = -2y + 3[/tex]

Rewrite as:

[tex]\frac{dy}{-2y + 3} = dx[/tex]

Integrate both sides of the equation

[tex]-\frac 12\ln|-2y + 3| = x + C_o[/tex]

Multiply through by -2

[tex]\ln|-2y + 3| = -2x + C_1[/tex]

Take the exponent of both sides

[tex]-2y + 3 = Ce^{-2x[/tex]

Next, we solve for C under the initial condition Y(0) = 1.

This gives

[tex]-2(1) + 3 = Ce^{-2 * 0[/tex]

Evaluate

-2 + 3 = C

Solve for C

C = 1

Substitute C = 1 in [tex]-2y + 3 = Ce^{-2x[/tex]

[tex]-2y + 3 = e^{-2x[/tex]

Next, we solve for y

[tex]y = \frac 12(3 - e^{-2x})[/tex]

Hence, the initial value equation is [tex]y = \frac 12(3 - e^{-2x})[/tex]

Read more about initial value at:

https://brainly.com/question/16945606

#SPJ1