Respuesta :

Answer:

[tex]\overset{\frown}{WX}= 66^{\circ}[/tex]

Step-by-step explanation:

Inscribed Angle Theorem

The measure of an inscribed angle is half the measure of the intercepted arc.

First, use the Inscribed Angle Theorem to calculate the measure of arc WY.

  [tex]\displaystyle \angle WXY=\dfrac{1}{2} \overset{\frown}{WY}[/tex]

[tex]\implies 57^{\circ}=\dfrac{1}{2} \overset{\frown}{WY}[/tex]

[tex]\implies \overset{\frown}{WY}= 2 \cdot 57^{\circ}[/tex]

[tex]\implies \overset{\frown}{WY}= 114^{\circ}[/tex]

Assuming XY is the diameter of the circle:

[tex]\implies \overset{\frown}{WY}+ \overset{\frown}{WX}= 180^{\circ}[/tex]

[tex]\implies 114^{\circ} + \overset{\frown}{WX}= 180^{\circ}[/tex]

[tex]\implies \overset{\frown}{WX}= 180^{\circ} - 114^{\circ}[/tex]

[tex]\implies \overset{\frown}{WX}= 66^{\circ}[/tex]