Respuesta :

Answer:

[tex]\sf y =\dfrac{-1}{3}x + 7[/tex]

Step-by-step explanation:

Equation of line: y =mx +b

 Here, m is the slope and b is the y-intercept.

Parallel lines have same slope.

            [tex]\sf y =\dfrac{-1}{3}x + 4[/tex]

     So, the slope of the required line = -1/3

Equation of the required line:  

                [tex]\sf y =\dfrac{-1}{3}x + b[/tex]

Point(6,5) goes through the line. substitute x = 6 and y =5 in the above equation and then we can find the value of y-intercept 'b'

    [tex]\sf 5 =\dfrac{-1}{3}*6 +b\\\\ 5 = -2 + b\\\\5+2 = b\\\\\boxed{b = 7}[/tex]

Equation of the require line:

           [tex]\sf \boxed{\bf y =\dfrac{-1}{3}x+7}[/tex]